alla flaggor
squeeze  ]
[ Källkod: shogun  ]

Paket: shogun-python-modular (0.9.3-4)

Länkar för shogun-python-modular



Hämta källkodspaketet shogun:


Externa resurser:

Liknande paket:

Large Scale Machine Learning Toolbox

SHOGUN - is a new machine learning toolbox with focus on large scale kernel methods and especially on Support Vector Machines (SVM) with focus to bioinformatics. It provides a generic SVM object interfacing to several different SVM implementations. Each of the SVMs can be combined with a variety of the many kernels implemented. It can deal with weighted linear combination of a number of sub-kernels, each of which not necessarily working on the same domain, where an optimal sub-kernel weighting can be learned using Multiple Kernel Learning. Apart from SVM 2-class classification and regression problems, a number of linear methods like Linear Discriminant Analysis (LDA), Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to train hidden markov models are implemented. The input feature-objects can be dense, sparse or strings and of type int/short/double/char and can be converted into different feature types. Chains of preprocessors (e.g. substracting the mean) can be attached to each feature object allowing for on-the-fly pre-processing.

SHOGUN comes in different flavours, a stand-a-lone version and also with interfaces to Matlab(tm), R, Octave, Readline and Python. This is the modular Python package employing swig.

Märken: Biologi: Nucleic Acids, Software Development: Python Development, Bibliotek, Field: Biologi, Bioinformatics, Matematik, Statistics, Implemented in: C++, Python, Role: Development Library, Purpose: Analysing, Learning

Andra paket besläktade med shogun-python-modular

  • beror
  • rekommenderar
  • föreslår
  • enhances

Hämta shogun-python-modular

Hämtningar för alla tillgängliga arkitekturer
Arkitektur Paketstorlek Installerad storlek Filer
sparc 2.930,6 kbyte14.240,0 kbyte [filförteckning]